Respuesta :

a line that is parallel to a line whose equation is y = -4x + 2, has the same exact slope,   [tex]\bf y=\stackrel{slope}{-4}x+2[/tex]

so, what's the equation of a line whose slope is -4 then, and passes through )(-6, -4)?

[tex]\bf \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{ -6}}\quad ,&{{ -4}})\quad \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies -4 \\\\\\ % point-slope intercept y-{{ y_1}}={{ m}}(x-{{ x_1}})\implies y-(-4)=-4[x-(-6)]\\ \left. \qquad \right. \uparrow\\ \textit{point-slope form} \\\\\\ y+4=-4(x+6)\implies \stackrel{point-slope~form}{y+4=-4x-24} \\\\\\ y=-4x-24-4\implies \stackrel{slope-intercept~form}{y=-4x-28}[/tex]