Respuesta :
first we know that:
AB+BC=AC
now , since B is the midpoint of AC, this means that AB=BC
therefore,
AB+BC=AC can also be written as
AB+AB=AC
3x-1+3x-1=8x-20
6x-2=8x-20
-2+20=8x-6x
18=2x
x=9
therefore:
AB=3(9)-1=27-1=26
AC=8(9)-20=52
BC=AB=26
AB+BC=AC
now , since B is the midpoint of AC, this means that AB=BC
therefore,
AB+BC=AC can also be written as
AB+AB=AC
3x-1+3x-1=8x-20
6x-2=8x-20
-2+20=8x-6x
18=2x
x=9
therefore:
AB=3(9)-1=27-1=26
AC=8(9)-20=52
BC=AB=26
Answer:
[tex]BC=26[/tex]
Step-by-step explanation:
we know that
[tex]AC=AB+BC[/tex] -----> equation A
In this problem
B is the midpoint of AC
so
[tex]AB=BC[/tex] ------> equation B
substitute equation B in equation A
[tex]AC=AB+AB[/tex] ------> [tex]AC=2AB[/tex] ------> equation C
we have
[tex]AC=8x-20[/tex]
[tex]AB=3x-1[/tex]
substitute the values in equation C and solve for x
[tex]8x-20=2(3x-1)[/tex]
[tex]8x-20=6x-2[/tex]
[tex]8x-6x=20-2[/tex]
[tex]2x=18[/tex]
[tex]x=9[/tex]
Find AB
[tex]AB=3x-1=3(9)-1=26[/tex]
Remember that
[tex]AB=BC[/tex]
therefore
[tex]BC=26[/tex]