Let the prime number which does not repeat be a, the prime number which repeats twice be b, the prime number which repeats 3 times be c.
Then the prime factorization of this number is [tex]a\cdot b^2 \cdot c^3[/tex].
Let's find the prime factorization of 1000:
[tex]1000=10^3=(2 \cdot5)^3=2^3 \cdot5^3[/tex]
So let c= 5, b be a number such that b^2>2^3=8, for example let b = 3, and let a be any prime, for example 2
thus the number is [tex]a\cdot b^2 \cdot c^3=2\cdot 3^2 \cdot 5^3=2 \cdot 9 \cdot 125=9 \dot 250=2250[/tex]
Answer: 2250