Respuesta :
I'm assuming the original expression is 6(A+2)+5A
If so, then,
6(A+2) + 5A
6*A+6*2 + 5A ... distribute
6A + 12 + 5A ... multiply
6A + 5A + 12 ... commutative property
11A + 12 ... combine like terms
The original expression simplifies to 11A+12
If so, then,
6(A+2) + 5A
6*A+6*2 + 5A ... distribute
6A + 12 + 5A ... multiply
6A + 5A + 12 ... commutative property
11A + 12 ... combine like terms
The original expression simplifies to 11A+12
Answer:
The simplified form is
[tex]6(A+2)+5A=11A+12[/tex]
Step-by-step explanation:
Given the expression
[tex]6(A+2)+5A[/tex]
we have to simplify the above expression
The expression is
[tex]6(A+2) + 5A[/tex]
Using distributive property, a.(b+c)=a.b+a.c
[tex](6.A+6\times 2) + 5A [/tex]
[tex](6A + 12) + 5A [/tex]
By associative property of addition a+(b+c)=(a=b)+c
[tex]6A+(12+5A)[/tex]
Using commutative property i.e a+b=b+a
[tex](6A + 5A) + 12[/tex]
Combining like terms, we get
[tex]11A+12[/tex]
which is required simplification