Respuesta :
Since the vertex form of a parabola is y=a(x-h)^2+k with h and k being the vertex (the x and y values, respectively), we get a(x-0)^2+20=ax^2+20. Plugging (10, 8) in to find a, we get 8=a(10)^2+20=a*100+20. Subtracting 20 from both sides, we get -12=100*a. Next, we divide 100 from both sides to get a=-12/100. Since h=0 and k=20, we have your answer!
The bird follows a parabolic path.
The values of h, k and a are: [tex]\mathbf{h = 0}[/tex] [tex]\mathbf{k = 20}[/tex] [tex]\mathbf{a = -0.12}[/tex]
The given parameters are:
[tex]\mathbf{Vertex = (0,20)}[/tex]
[tex]\mathbf{(x,y) = (10,8)}[/tex] --- a point on the path
The vertex of a quadratic function is represented as:
Vertex = (h,k)
So, by comparison:
[tex]\mathbf{h = 0}[/tex]
[tex]\mathbf{k = 20}[/tex]
The general equation of parabola is:
[tex]\mathbf{y = a(x - h)^2 + k}[/tex]
Substitute values for h and k
[tex]\mathbf{y = a(x - 0)^2 + 20}[/tex]
[tex]\mathbf{y = a(x)^2 + 20}[/tex]
[tex]\mathbf{y = ax^2 + 20}[/tex]
Substitute [tex]\mathbf{(x,y) = (10,8)}[/tex]
[tex]\mathbf{8 = a\times 10^2 + 20}[/tex]
[tex]\mathbf{8 = 100a + 20}[/tex]
Subtract 20 from both sides
[tex]\mathbf{-12 = 100a }[/tex]
Divide both sides by 100
[tex]\mathbf{a = -0.12}[/tex]
So, we have:
[tex]\mathbf{h = 0}[/tex]
[tex]\mathbf{k = 20}[/tex]
[tex]\mathbf{a = -0.12}[/tex]
Read more about equations of parabola at:
https://brainly.com/question/4074088