Respuesta :
Answer:
[tex]64+96=32(2+3)=160[/tex]
Step-by-step explanation:
Given : Expression [tex]64+96[/tex]
To find : Oliver uses the greatest common factor and distributive property to rewrite this sum ?
Solution :
The greatest common factor of 64 and 96 is
[tex]64=2\times 2\times 2\times 2\times 2\times 2[/tex]
[tex]96=2\times 2\times 2\times 2\times 2\times 3[/tex]
[tex]GCF(64,96)=2\times 2\times 2\times 2\times 2[/tex]
[tex]GCF(64,96)=32[/tex]
Taking 32 common,
[tex]64+96=32(2+3)[/tex]
Apply distributive property, [tex](a+b)c=ac+bc[/tex]
[tex]32(2+3)=32\times 2+32\times 3[/tex]
[tex]32(2+3)=64+96[/tex]
[tex]32(2+3)=160[/tex]
Therefore, [tex]64+96=32(2+3)=160[/tex]