Respuesta :

32(2+3) because 32 goes into 64 twice and 96 three times

Answer:

[tex]64+96=32(2+3)=160[/tex]

Step-by-step explanation:

Given : Expression [tex]64+96[/tex]

To find : Oliver uses the greatest common factor and distributive property to rewrite this sum ?

Solution :

The greatest common factor of 64 and 96 is

[tex]64=2\times 2\times 2\times 2\times 2\times 2[/tex]

[tex]96=2\times 2\times 2\times 2\times 2\times 3[/tex]

[tex]GCF(64,96)=2\times 2\times 2\times 2\times 2[/tex]

[tex]GCF(64,96)=32[/tex]

Taking 32 common,

[tex]64+96=32(2+3)[/tex]

Apply distributive property, [tex](a+b)c=ac+bc[/tex]

[tex]32(2+3)=32\times 2+32\times 3[/tex]

[tex]32(2+3)=64+96[/tex]

[tex]32(2+3)=160[/tex]

Therefore, [tex]64+96=32(2+3)=160[/tex]