Respuesta :

= 2(2x∛2y) +4(3x^2y∛2y^2)
= 4x (
∛2y) + 12x^2y (∛2y^2)

Answer is A. first option

Answer:

Option: A is the correct answer.

          The sum is:

    [tex]4x(\sqrt[3]{2y})+12x^2y(\sqrt[3]{2y^2})[/tex]

Step-by-step explanation:

We are given a expression as:

[tex]2(\sqrt[3]{16x^3y})+4(\sqrt[3]{54x^6y^5})[/tex]

Since, the quantity which comes three times inside the cube root sign comes out as a single.

( i.e. if we have:

[tex]\sqrt[3]{x^3}=x[/tex] )

Also,

[tex]2(\sqrt[3]{16x^3y})=2(2x\sqrt[3]{2y})\\\\i.e.\\\\2(\sqrt[3]{16x^3y})=4x(\sqrt[3]{2y})[/tex]

(  Since,

[tex]16x^3y=2^3\cdot x^3\cdot 2y[/tex]  )

Also,

[tex]4(\sqrt[3]{54x^6y^5})=4(3x^2y\sqrt[3]{2y^2})\\\\i.e.\\\\4(\sqrt[3]{54x^6y^5})=12x^2y(\sqrt[3]{2y^2})[/tex]

(   Since,

[tex]54x^6y^5=3^3\cdot (x^2)^3\cdot y^3\cdot 2\cdot y^2[/tex]  )

Hence, we get the simplified expression as:

  [tex]4x(\sqrt[3]{16x^3y})+12x^2y(\sqrt[3]{2y^2})=4x(\sqrt[3]{2y})+12x^2y(\sqrt[3]{2y^2})[/tex]