Respuesta :

d(AB) = √(6-0)^2 +(3-0)^2
d(AB) = 
√36+9
d(AB) = 
√45
d(AB) = 3
√5
or
d(AB) = 6.71

hope it helps

Answer:

6.71 units.

Step-by-step explanation:

We have been given coordinates of two points [tex]A(0,0)[/tex] and [tex]B(6,3)[/tex]. We are asked to find the length of AB.

To find the length of Ab, we will use distance formula.

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Let point [tex](0,0)=(x_1,y_1)[/tex] and [tex](6,3)=(x_2,y_2)[/tex].

Upon substituting coordinates of our given points in distance formula, we will get:

[tex]d=\sqrt{(6-0)^2+(3-0)^2}[/tex]

[tex]d=\sqrt{(6)^2+(3)^2}[/tex]

[tex]d=\sqrt{36+9}[/tex]

[tex]d=\sqrt{45}[/tex]

[tex]d=\sqrt{5\cdot 9}[/tex]

[tex]d=\sqrt{5\cdot 3^2}[/tex]

[tex]d=3\sqrt{5}[/tex]

[tex]d=6.7082039\approx 6.71[/tex]

Therefore, the length of AB is approximately 6.71 units.