Respuesta :
d(AB) = √(6-0)^2 +(3-0)^2
d(AB) = √36+9
d(AB) = √45
d(AB) = 3√5
or
d(AB) = 6.71
hope it helps
d(AB) = √36+9
d(AB) = √45
d(AB) = 3√5
or
d(AB) = 6.71
hope it helps
Answer:
6.71 units.
Step-by-step explanation:
We have been given coordinates of two points [tex]A(0,0)[/tex] and [tex]B(6,3)[/tex]. We are asked to find the length of AB.
To find the length of Ab, we will use distance formula.
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Let point [tex](0,0)=(x_1,y_1)[/tex] and [tex](6,3)=(x_2,y_2)[/tex].
Upon substituting coordinates of our given points in distance formula, we will get:
[tex]d=\sqrt{(6-0)^2+(3-0)^2}[/tex]
[tex]d=\sqrt{(6)^2+(3)^2}[/tex]
[tex]d=\sqrt{36+9}[/tex]
[tex]d=\sqrt{45}[/tex]
[tex]d=\sqrt{5\cdot 9}[/tex]
[tex]d=\sqrt{5\cdot 3^2}[/tex]
[tex]d=3\sqrt{5}[/tex]
[tex]d=6.7082039\approx 6.71[/tex]
Therefore, the length of AB is approximately 6.71 units.