Respuesta :

0.78422, so the nearest tenth being 0.8. Have a good day!

Answer:

The standard deviation of the data is 0.7.

Step-by-step explanation:

Given : Data 7.7, 8.4, 9, 8, 6.9

To find : What is the standard deviation of the following data set rounded to the nearest tenth?

Solution :

We can apply the standard deviation formula,

[tex]\sigma^2= \frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+...+(x_n-\overline{x})^2}{n}[/tex]

Where, [tex]\overline{x}[/tex] is the arithmetic mean

First we find the arithmetic mean

[tex]\overline{x}=\frac{\sum x_i}{n}[/tex]

[tex]\overline{x}=\frac{7.7+8.4+ 9+ 8+6.9}{5}[/tex]

[tex]\overline{x}=\frac{40}{5}[/tex]

[tex]\overline{x}=8[/tex]

Now, substitute the values in the standard deviation formula,

[tex]\sigma^2= \frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+...+(x_n-\overline{x})^2}{n}[/tex]

[tex]\sigma^2= \frac{(7.7-8)^2+(8.4-8)^2+(9-8)^2+(8-8)^2+(6.9-8)^2}{5}[/tex]

[tex]\sigma^2=\frac{(-0.3)^2+(0.4)^2+(1)^2+(0)^2+(-1.1)^2}{5}[/tex]

[tex]\sigma^2=\frac{0.09+ 0.016+ 1+0+1.21}{5}[/tex]

[tex]\sigma^2=\frac{2.316}{5}[/tex]

[tex]\sigma^2=0.4632[/tex]

[tex]\sigma=\sqrt{0.4632}[/tex]

[tex]\sigma=0.680[/tex]

Therefore, The standard deviation of the data is 0.7.