Respuesta :

Given the differential equation

[tex]5t^3 \frac{dx}{dt} +2x-2=0[/tex]

The solution is as follows:

[tex]5t^3 \frac{dx}{dt} +2x-2=0 \\ \\ \Rightarrow5t^3 \frac{dx}{dt} =2-2x \\ \\ \Rightarrow \frac{5}{2-2x} dx= \frac{1}{t^3} dt \\ \\ \Rightarrow \int {\frac{5}{2-2x} } \, dx = \int {\frac{1}{t^3}} \, dt \\ \\ \Rightarrow- \frac{5}{2} \ln(2-2x)=- \frac{1}{2t^2} +A \\ \\ \Rightarrow\ln(2-2x)= \frac{1}{5t^2} +B\\ \\ \Rightarrow2-2x=Ce^{\frac{1}{5t^2}} \\ \\ \Rightarrow 2x=Ce^{\frac{1}{5t^2}}+2 \\ \\ \Rightarrow x=De^{\frac{1}{5t^2}}+1[/tex]