Given:
Specific volume = 1.188 m³/kg
Pressure, p = 150 kPa
Temperature, T = 120 C
The mass density is
ρ = 1/(1.188 m³/kg) = 0.8418 kg/m³
The ideal gas law is
pV = nRT
where
V = volume,
p = pressure,
n = numbe pf moles,
T = temperature
R = 8.314 J/(mol-K), the gas constant
The molar specific volume is
[tex] V_{n} = \frac{V}{n} = \frac{RT}{p} \\ = \frac{(8.314 \, \frac{J}{mol-K})(120+273 \, K) }{150 \times 10^{3} \, \frac{N}{m^{2}} } \\ = 0.0234 \, \frac{m^{3}}{mol} [/tex]
Answer:
The molar specific volume is 0.0234 m³/mol.
The density is 0.842 kg/m³