Respuesta :
how about: y = (x + 5)
6y^2 + 5y - 4 = 0
(2y - 1)(3y + 4) = 0
2y - 1 = 0
y = 1/2
3y + 4 = 0
y = -3/4
replace substitution, y = (x + 5)
1/2 = (x + 5)
-9/2 = x
-3/4 = (x + 5)
-23/4 = x
6y^2 + 5y - 4 = 0
(2y - 1)(3y + 4) = 0
2y - 1 = 0
y = 1/2
3y + 4 = 0
y = -3/4
replace substitution, y = (x + 5)
1/2 = (x + 5)
-9/2 = x
-3/4 = (x + 5)
-23/4 = x
we have
[tex]6(x+5)^{2}+5(x+5)-4=0[/tex]
we know that
The equation of a quadratic equation is of the form
[tex]ax^{2} +bx+c=0[/tex]
so
Let
[tex]u=(x+5)[/tex]
Substitute
[tex]6(u)^{2}+5(u)-4=0[/tex]
therefore
the answer is
The substitution should be [tex]u=(x+5)[/tex]