Respuesta :

Answer:

A positive discriminant shows that the quadratic equation [tex]6x^2+13x+6=0[/tex] has two distinct real number solutions namely [tex]x_1=\frac{-2}{3}[/tex]  or [tex]x_2=\frac{3}{2}[/tex]

Step-by-step explanation:

 Consider the given Quadratic equation [tex]6x^2+13x+6=0[/tex]

Discriminant is a part of quadratic formula that shows the nature of root for a given quadratic equation.

Quadratic formula for a general quadratic equation of the form [tex]ax^2+bx+c=0[/tex] is given as:

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]   ......(A)

Where, [tex]\sqrt{b^2-4ac}[/tex] is the discriminant. .......(1)

The discriminant can be positive, zero, or negative.

A positive discriminant shows that the quadratic equation has two distinct real number solutions.

A discriminant of zero shows that the quadratic equation has a repeated real number solution.


A negative discriminant shows that neither of the solutions are real numbers.

Given Quadratic equation [tex]6x^2+13x+6=0[/tex]

Here, a= 6 , b=13, c= 6

Put in (1) , [tex]\sqrt{b^2-4ac}[/tex]

[tex]\Rightarrow \sqrt{(13)^2-4 \times 6 \times 6}[/tex]

[tex]\Rightarrow \sqrt{169-144}[/tex]

[tex]\Rightarrow \sqrt{25}[/tex]

[tex]\Rightarrow 5[/tex]

Thus, a positive discriminant shows that the quadratic equation has two distinct real number solutions.

Roots can be find as, Using (A)

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{-13\pm 5}{2 \times 6}[/tex]

[tex]x_1=\frac{-13+ 5}{12}[/tex]  or [tex]x_2=\frac{-13- 5}{12}[/tex]

[tex]x_1=\frac{-8}{12}[/tex]  or [tex]x_2=\frac{18}{12}[/tex]

[tex]x_1=\frac{-2}{3}[/tex]  or [tex]x_2=\frac{3}{2}[/tex]

Hence, the system has two distinct real roots.