Respuesta :

Answer:

8.6 units.

Step-by-step explanation:

To calculate the distance between the points (-3, -4) and (2, 3), we can use the distance formula which is given by :

[tex]\sf \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]

Where [tex]\sf (x_1, y_1)[/tex] and [tex] \sf (x_2, y_2)[/tex] are the coordinates of the two points.

Let,

[tex]\sf (-3, -4) = (x_1, y_1)\\ [/tex]

[tex]\sf (2, 3) = (x_2, y_2)\\[/tex]

Plug in the values,

[tex]\sf \ \ \ \ \longrightarrow \sqrt{(2 - (-3))^2 + (3 - (-4))^2} \\ \\ [/tex]

[tex]\sf \ \ \ \ \longrightarrow \sqrt{(2 + 3)^2 + (3 +4)^2}\\ \\ [/tex]

[tex]\sf \ \ \ \ \longrightarrow \sqrt{(5)^2 + (7)^2}\\ \\ [/tex]

[tex]\sf \ \ \ \ \longrightarrow \sqrt{25 + 49}\\ \\ [/tex]

[tex]\sf \ \ \ \ \longrightarrow \sqrt{74}\\ \\ [/tex]

[tex] \sf \ \ \ \ \longrightarrow8.6 \ units [/tex]

Therefore, the distance between the points (-3, -4) and (2, 3) is 8.6 units.