Answer:
8.6 units.
Step-by-step explanation:
To calculate the distance between the points (-3, -4) and (2, 3), we can use the distance formula which is given by :
[tex]\sf \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]
Where [tex]\sf (x_1, y_1)[/tex] and [tex] \sf (x_2, y_2)[/tex] are the coordinates of the two points.
Let,
[tex]\sf (-3, -4) = (x_1, y_1)\\ [/tex]
[tex]\sf (2, 3) = (x_2, y_2)\\[/tex]
Plug in the values,
[tex]\sf \ \ \ \ \longrightarrow \sqrt{(2 - (-3))^2 + (3 - (-4))^2} \\ \\ [/tex]
[tex]\sf \ \ \ \ \longrightarrow \sqrt{(2 + 3)^2 + (3 +4)^2}\\ \\ [/tex]
[tex]\sf \ \ \ \ \longrightarrow \sqrt{(5)^2 + (7)^2}\\ \\ [/tex]
[tex]\sf \ \ \ \ \longrightarrow \sqrt{25 + 49}\\ \\ [/tex]
[tex]\sf \ \ \ \ \longrightarrow \sqrt{74}\\ \\ [/tex]
[tex] \sf \ \ \ \ \longrightarrow8.6 \ units [/tex]
Therefore, the distance between the points (-3, -4) and (2, 3) is 8.6 units.