Respuesta :
Answer:
To find the area of a sector, you can use the formula:
[tex][ \text{Area of sector} = \frac{\text{angle measure}}{360^\circ} \times \pi r^2 ][/tex]
Given that the radius ( r = 8 ) cm and the angle measure is ( 45^\circ ), you can plug these values into the formula:
[tex][ \text{Area of sector} = \frac{45^\circ}{360^\circ} \times \pi \times 8^2 ][/tex]
[tex][ = \frac{1}{8} \times \pi \times 64 ][/tex]
[tex][ = 8 \pi ][/tex]
So, the area of the sector is ( 8 \pi ) square centimeters.
Answer:
Exact area = 8π cm²
Rounded area = 25.1 cm² (nearest tenth)
Step-by-step explanation:
To find the area of a sector where the central angle is measured in degrees, we can use the following formula:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a sector}}\\\\A=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2\\\\\textsf{where:}\\\phantom{ww}\bullet\;\;\textsf{$r$ is the radius.}\\\phantom{ww}\bullet\;\;\textsf{$\theta$ is the angle measured in degrees.}\end{array}}[/tex]
In this case:
- r = 8 cm
- θ = 45°
Substitute the values into the formula and solve for area A:
[tex]A=\left(\dfrac{45^{\circ}}{360^{\circ}}\right) \pi \cdot 8^2\\\\\\A=\dfrac{1}{8} \pi \cdot 64\\\\\\A=8\pi\\\\\\A=25.1327412287...\\\\\\A\approx 25.1\; \sf cm^2[/tex]
Therefore, the exact area of the sector is 8π cm², which is approximately 25.1 cm² rounded to the nearest tenth.