Respuesta :

The answer is -8/7

y2-y1/x2-x1=slope
17-3/10-(-6)=14/16=7/8
7/8 --> negative reciprocal --> -8/7

The equation of the perpendicular bisector between k(3,-6) and l(10,17) is

y = (23/13)x - 81/2.

What is the Equation of perpendicular bisector?

To find the equation of perpendicular bisector we need the following:

- Midpoint of the line

[tex]x_{m}[/tex] = ( [tex]x_{1}+x_{2}[/tex] ) / 2 and [tex]y_{m} =( y_{1} +y_{2})[/tex] / 2

- A line with endpoints

      [tex](x_{1},~x_{2})~and~(y_{1},~ y_{2} )[/tex]

- Slope of the line.

[tex]m_{1}[/tex] = ([tex]x_{2}-x_{1}[/tex] ) / ( [tex]y_{2} -y_{1}[/tex])

- Slope of perpendicular bisector.

[tex]m_{2}[/tex] = -1 / [tex]m_{1}[/tex]

The equation of perpendicular bisector is given by:

    ( y - [tex]y_{m}[/tex] ) = [tex]m_{2}[/tex] ( x - [tex]x_{m}[/tex] )

Let's calculate the following:

1.

[tex]x_{m}[/tex] = ( [tex]x_{1}+x_{2}[/tex] ) / 2 and [tex]y_{m} =( y_{1} +y_{2})[/tex] / 2

We have,

(3, -6) = ( [tex]x_{1},~y_{1}[/tex] )

(10, 17) = ( [tex]x_{2},~y_{2}[/tex] )

So,

[tex]x_{m}[/tex] = (3 + 10)  / 2 = 13/2

[tex]y_{m}[/tex] = (-6+17) / 2 = 11/2

2.

[tex]m_{1}[/tex] = ([tex]x_{2}-x_{1}[/tex] ) / ( [tex]y_{2} -y_{1}[/tex])

     = ( -10 - 3 ) / ( 17 - (-6))

     = -13 / 23

3.

[tex]m_{2}[/tex] = -1 / [tex]m_{1}[/tex]

     = -1 / (-13/23)

     = 23 / 13

4.

( y - [tex]y_{m}[/tex] ) = [tex]m_{2}[/tex] ( x - [tex]x_{m}[/tex] )

( y - 11/2 ) = 23/13 ( x - 13/2 )

y - 11/2 = 23/13x - (23/13)(13/2)

y - 11/2 = 23/13x - 46

y = 23/13 x - 46 + 11/2

y = (23/13)x - 81/2

Thus the equation of the perpendicular bisector between k(3,-6) and l(10,17) is y = (23/13)x - 81/2.

Learn more about perpendicular bisector here:

https://brainly.com/question/23947822

#SPJ2