[tex]\bf \textit{George reads }\stackrel{rise}{200}\textit{ pages in }\stackrel{run}{30}\textit{ minutes}\quad
\\\\\\
slope = {{ m}}= \cfrac{rise}{run}\implies \cfrac{200}{30}\implies \cfrac{20}{3}\\\\
-------------------------------\\\\
\begin{array}{ccll}
x&g(x)\\
\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\
4&-8\\
\boxed{4}&\boxed{10}\\
\boxed{4}&\boxed{28}
\end{array}\\\\
-------------------------------\\\\[/tex]
[tex]\bf \begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
% (a,b)
&({{ 4}}\quad ,&{{ 10}})\quad
% (c,d)
&({{ 4}}\quad ,&{{ 28}})
\end{array}
\\\\\\
% slope = m
slope = {{ m}}= \cfrac{rise}{run} \implies
\cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{28-10}{4-4}\implies \stackrel{und efined}{\cfrac{18}{0}}[/tex]
so.. for g(x), notice, the value for "x" is the same all around, 4, 4 and 4, so, is really just a vertical line, check the picture below.
now, the slope of f(x), is just 20/3 or 6 + 2/3.
so... since g(x) has a undefined slope, can't quite determine their relationship.