Respuesta :

[tex]\bf \textit{George reads }\stackrel{rise}{200}\textit{ pages in }\stackrel{run}{30}\textit{ minutes}\quad \\\\\\ slope = {{ m}}= \cfrac{rise}{run}\implies \cfrac{200}{30}\implies \cfrac{20}{3}\\\\ -------------------------------\\\\ \begin{array}{ccll} x&g(x)\\ \text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\ 4&-8\\ \boxed{4}&\boxed{10}\\ \boxed{4}&\boxed{28} \end{array}\\\\ -------------------------------\\\\[/tex]

[tex]\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ 4}}\quad ,&{{ 10}})\quad % (c,d) &({{ 4}}\quad ,&{{ 28}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{28-10}{4-4}\implies \stackrel{und efined}{\cfrac{18}{0}}[/tex]

so.. for g(x), notice, the value for "x" is the same all around, 4, 4 and 4, so, is really just a vertical line, check the picture below.

now, the slope of f(x), is just 20/3 or 6 + 2/3.

so... since g(x) has a undefined slope, can't quite determine their relationship.
Ver imagen jdoe0001