Respuesta :
[tex]6x-x^2-8 \ \textgreater \ 0 \\
-x^2+6x-8\ \textgreater \ 0 \\
-x^2+2x+4x-8\ \textgreater \ 0 \\
-x(x-2)+4(x-2)\ \textgreater \ 0 \\
(-x+4)(x-2)\ \textgreater \ 0 \\ \\
\hbox{the zeros:} \\
(-x+4)(x-2)=0 \\
-x+4=0 \ \lor \ x-2=0 \\
x=4 \ \lor \ x=2[/tex]
The coefficient of x is negative, so the parabola opens downwards. The values greater than 0 are between the zeros.
The solution set for the inequality is:
[tex]x \in (2,4)[/tex]
The answer is B.
The coefficient of x is negative, so the parabola opens downwards. The values greater than 0 are between the zeros.
The solution set for the inequality is:
[tex]x \in (2,4)[/tex]
The answer is B.
-x²+6x-8>0 a=-1 , b=6 , c=-8
Δ = b² - 4.a.c
Δ = 6² - 4 . -1 . -8
Δ = 36 - 32
Δ = 4
x = (-b +- √Δ) / 2a
x' = (-6 + √4) / 2(-1) x'' = (-6 - √4)/ 2(-1)
x' = -4 / -2 x'' = -8 / -2
x' = 2 x'' = 4
2>x>4 ou (2,4)
Δ = b² - 4.a.c
Δ = 6² - 4 . -1 . -8
Δ = 36 - 32
Δ = 4
x = (-b +- √Δ) / 2a
x' = (-6 + √4) / 2(-1) x'' = (-6 - √4)/ 2(-1)
x' = -4 / -2 x'' = -8 / -2
x' = 2 x'' = 4
2>x>4 ou (2,4)
