What is the general form of the equation of a circle with its center at (-2, 1) and passing through (-4, 1)? x2 + y2 − 4x + 2y + 1 = 0 x2 + y2 + 4x − 2y + 1 = 0 x2 + y2 + 4x − 2y + 9 = 0 x2 − y2 + 2x + y + 1 = 0

Respuesta :

naǫ
First use the standard form:
[tex](x-h)^2+(y-k)^2=r^2[/tex]
(h,k) - the coordiantes of the center

The center is (-2,1).
[tex](x-(-2))^2+(y-1)^2=r^2 \\ (x+2)^2+(y-1)^2=r^2[/tex]

The circle passes through the point (x,y)=(-4,1).
[tex](-4+2)^2+(1-1)^2=r^2 \\ (-2)^2+0^2=r^2 \\ r^2=4[/tex]

The standard form is:
[tex](x+2)^2+(y-1)^2=4[/tex]

Convert it to the general form:
[tex](x+2)^2+(y-1)^2=4 \\ x^2+4x+4+y^2-2y+1=4 \\ x^2+y^2+4x-2y+4+1-4=0 \\ \boxed{x^2+y^2+4x-2y+1=0}[/tex]