Respuesta :
The sine of angle A is the length of the side opposite to the angle divided by the length of the hypotenuse.
[tex]\sin 20^\circ=\frac{10}{x} \\ \\ x \times \sin 20^\circ = 10 \\ \\ x = \frac{10}{\sin 20^\circ} \\ \\ x \approx \frac{10}{0.342} \\ \\ x \approx 29.2[/tex]
The hypotenuse is approximately 29.2 cm long.
[tex]\sin 20^\circ=\frac{10}{x} \\ \\ x \times \sin 20^\circ = 10 \\ \\ x = \frac{10}{\sin 20^\circ} \\ \\ x \approx \frac{10}{0.342} \\ \\ x \approx 29.2[/tex]
The hypotenuse is approximately 29.2 cm long.
Answer:
29.23 cm
Step-by-step explanation:
Given : In a right triangle, angle A measures 20°. The side opposite angle A is 10 centimeters long.
To Find: Approximately how long is the hypotenuse of the triangle?
Solution:
Refer the Attached figure
In ΔABC
BC = 10 cm
∠A = 20°
AC = Hypotenuse
Using trigonometric ratio
[tex]Sin \theta = \frac{Perpendicular}{Hypotenuse}[/tex]
[tex]Sin 20^{\circ} = \frac{BC}{AC}[/tex]
[tex]0.3420 = \frac{10}{AC}[/tex]
[tex]AC= \frac{10}{0.3420}[/tex]
[tex]AC= 29.23[/tex]
Thus the hypotenuse of given triangle is approximately 29.23 cm.
