Respuesta :

Answer:

  (√6)/2 square units

Step-by-step explanation:

The area of a triangle is half the magnitude of the cross product of the vectors representing adjacent sides.

  QR = (4-3, -1-(-4), -4-(-5)) = (1, 3, 1)

  QS = (3 -3, -5-(-4), -6-(-5)) = (0, -1, -1)

The cross product is the determinant ...

[tex]\text{det}\left|\begin{array}{ccc}i&j&k\\1&3&1\\0&-1&-1\end{array}\right|=-2i+j-k[/tex]

The magnitude of this is ...

  |QR × QS| = √((-2)² +1² +(-1)²) = √6

The area of the triangle is half this value:

  Area = (1/2)√6 . . . . square units