use chain rule
[tex]\frac{d}{dx}f(x)g(x)=f'(x)g(x)+g'(x)f(x)[/tex]
and also power rule
[tex]\frac{d}{dx} x^m=mx^{m-1}[/tex]
so
well, we will say [tex]f(x)=(2x+5)^4[/tex] and [tex]g(x)=(5x+2)^{-2}[/tex]
[tex]f'(x)=4(2x+5)^3(\frac{d}{dy}(2x+5))=4(2x+5)^3(2)=8(2x+5)^3[/tex]
[tex]g'(x)=-2(5x+2)^{-3}(\frac{d}{dx}(5x+2))=-2(5x+2)^{-3}(5)=-10(5x+2)^{-3}[/tex]
so
[tex]\frac{d}{dx}(2x+5)^4(5x+2)^{-2}=8(2x+5)^3(5x+2)^{-2}+(-10(5x+2)^{-3})(2x+5)^4)[/tex]
simplify yourself