Respuesta :

We start with

[tex]4^1 \equiv 4 \ (\text{mod} \ 10)[/tex]

----------------------------

Square both sides

[tex]4^1 \equiv 4 \ (\text{mod} \ 10)[/tex]

[tex](4^1)^2 \equiv 4^2 \ (\text{mod} \ 10)[/tex]

[tex]4^2 \equiv 16 \ (\text{mod} \ 10)[/tex]

[tex]4^2 \equiv 6 \ (\text{mod} \ 10)[/tex]

----------------------------

Square both sides again

[tex]4^2 \equiv 6 \ (\text{mod} \ 10)[/tex]

[tex](4^2)^2 \equiv 6^2 \ (\text{mod} \ 10)[/tex]

[tex]4^4 \equiv 36 \ (\text{mod} \ 10)[/tex]

[tex]4^4 \equiv 6 \ (\text{mod} \ 10)[/tex]

----------------------------

Square both sides again

[tex]4^4 \equiv 6 \ (\text{mod} \ 10)[/tex]

[tex](4^4)^2 \equiv 6^2 \ (\text{mod} \ 10)[/tex]

[tex]4^8 \equiv 36 \ (\text{mod} \ 10)[/tex]

[tex]4^8 \equiv 6 \ (\text{mod} \ 10)[/tex]

----------------------------

Square both sides again

[tex]4^8 \equiv 6 \ (\text{mod} \ 10)[/tex]

[tex](4^8)^2 \equiv 6^2 \ (\text{mod} \ 10)[/tex]

[tex]4^{16} \equiv 36 \ (\text{mod} \ 10)[/tex]

[tex]4^{16} \equiv 6 \ (\text{mod} \ 10)[/tex]

----------------------------

So far we have found that,

[tex]4^1 \equiv 4 \ (\text{mod} \ 10)[/tex]

[tex]4^2 \equiv 6 \ (\text{mod} \ 10)[/tex]

[tex]4^4 \equiv 6 \ (\text{mod} \ 10)[/tex]

[tex]4^8 \equiv 6 \ (\text{mod} \ 10)[/tex]

[tex]4^{16} \equiv 6 \ (\text{mod} \ 10)[/tex]

Multiply out all of the left sides of those equations above. Multiply out the right sides as well to balance things out

[tex](4^1)*(4^2)*(4^4)*(4^8)*(4^{16}) \equiv 4*6*6*6*6 \ (\text{mod} \ 10)[/tex]

[tex]4^{1+2+4+8+16} \equiv 24*36*6 \ (\text{mod} \ 10)[/tex]

[tex]4^{31} \equiv 4*6*6 \ (\text{mod} \ 10)[/tex]

[tex]4^{31} \equiv 24*6 \ (\text{mod} \ 10)[/tex]

[tex]4^{31} \equiv 4*6 \ (\text{mod} \ 10)[/tex]

[tex]4^{31} \equiv 24 \ (\text{mod} \ 10)[/tex]

[tex]4^{31} \equiv 4 \ (\text{mod} \ 10)[/tex]

-------------------------------------------------------------------------
-------------------------------------------------------------------------

The final answer is 4