Respuesta :

Write out all the solutions from 1 to 10 and add them together 

(1^2+3(1)-2)=2
(2^2+3(2)-2)=8 
" = 16
" = 32 
" = 38 
" = 52
" = 68 
" = 86 
" = 106 
" = 128

Add them together: 530 

Hope I helped :) 

Sigma notations are used to represent the sum of numbers that follows a sequence

The value of the sigma notation is 530.

The expression is given as:

[tex]\mathbf{\sum\limits^{10}_{i =1}(i^2 + 3i - 2)}[/tex]

Substitution 1 to 10 for i

[tex]\mathbf{\sum\limits^{10}_{i =1}(i^2 + 3i - 2) =(1^2 + 3(1) - 2)+(2^2 + 3(2) - 2)+.................+(10^2 + 3(10) - 2)}[/tex]

Evaluate each term of the notation

[tex]\mathbf{\sum\limits^{10}_{i =1}(i^2 + 3i - 2) =2+8+16+26+38+52+68+86+106+128}[/tex]

Add all terms

[tex]\mathbf{\sum\limits^{10}_{i =1}(i^2 + 3i - 2) =530}[/tex]

Hence, the value of the sigma notation is 530.

Read more about sigma notations at:

https://brainly.com/question/23653677