Respuesta :
Working Formula:
V = s^3
Given:
dV/dt = -4 cubic meters per minute
V = 125 cubic meters
Required: ds/dt (rate of change of edge per minute) at V = 125 m^3
Solution:
Differentiate, equation below
V = s^3
dV/dt = 3*s^2 (ds/dt)
-4 = 3*s^2 (ds/dt)
ds/dt = -1.33/s^2 -----------> eq. (1)
V = s^3
(125)^0.33 = (s^3)^0.33
s = 5 ------------> eq. (2)
Substitute eq. (2) to eq. (1), we get
ds/dt = -1.33/(5)^2 = -0.053 meters per minute
ANSWER: -0.053 meters per minute
V = s^3
Given:
dV/dt = -4 cubic meters per minute
V = 125 cubic meters
Required: ds/dt (rate of change of edge per minute) at V = 125 m^3
Solution:
Differentiate, equation below
V = s^3
dV/dt = 3*s^2 (ds/dt)
-4 = 3*s^2 (ds/dt)
ds/dt = -1.33/s^2 -----------> eq. (1)
V = s^3
(125)^0.33 = (s^3)^0.33
s = 5 ------------> eq. (2)
Substitute eq. (2) to eq. (1), we get
ds/dt = -1.33/(5)^2 = -0.053 meters per minute
ANSWER: -0.053 meters per minute
Using implicit differentiation, it is found that the rate of change of an edge is of -0.0533 meters per minute.
---------------------
The volume of a cube of edge e is given by:
[tex]V = e^3[/tex]
In this problem, the volume is of 125 m³, thus, we solve the above equation to find the length of an edge, in metres.
[tex]V = e^3[/tex]
[tex]125 = e^3[/tex]
[tex]e = \sqrt[3]{125}[/tex]
[tex]e = 5[/tex]
Now, for the rate of change, we need to apply the implicit differentiation, thus:
[tex]V = e^3[/tex]
[tex]\frac{dV}{dt} = 3e^2\frac{de}{dt}[/tex]
[tex]\frac{dV}{dt} = 3(5)^2\frac{de}{dt}[/tex]
[tex]\frac{dV}{dt} = 75\frac{de}{dt}[/tex]
Volume decreases at a rate of 4 cubic meters per minute, thus:
[tex]\frac{dV}{dt} = -4[/tex]
The rate of change of an edge is [tex]\frac{de}{dt}[/tex]. Then:
[tex]-4 = 75\frac{de}{dt}[/tex]
[tex]\frac{de}{dt} = -\frac{4}{75}[/tex]
[tex]\frac{de}{dt} = -0.0533[/tex]
The rate of change is of -0.0533 cubic meters per minute.
A similar problem is given at https://brainly.com/question/24158553