Respuesta :

so, what we will do is, multiply both top and bottom, by the conjugate of the denominator, so, the denominator is 7 + 10i, so its conjugate is 7 - 10i then, let's do so.

[tex]\bf \textit{difference of squares} \\ \quad \\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b) \\\\\\ \textit{also recall that }i^2=-1\\\\ -------------------------------\\\\[/tex]

[tex]\bf \cfrac{-3-7i}{7+10i}\cdot \cfrac{7-10i}{7-10i}\implies \cfrac{(-3-7i)(7-10i)}{(7+10i)(7-10i)}\implies \cfrac{(-3-7i)(7-10i)}{7^2-(10i)^2} \\\\\\ \cfrac{-21+30i-49i+70i^2}{7^2-(10^2i^2)}\implies \cfrac{-21+30i-49i+70\left( \boxed{-1} \right)}{7^2-\left[10^2\left( \boxed{-1} \right)\right]} \\\\\\ \cfrac{-21+30i-49i-70}{49-(-100)}\implies \cfrac{-91-19i}{149}\implies -\cfrac{91}{149}-\cfrac{19i}{149}[/tex]