Respuesta :
so, on day 1, the plant was say "P" cm tall.
then 2 weeks go by, or 14 days, and the plant grew to 452 cm.
[tex]\bf \qquad \textit{Amount for Exponential Growth}\\\\ A=P(1 + r)^t\qquad \begin{cases} A=\textit{accumulated amount}\to 452\\ P=\textit{initial amount}\\ r=rate\to 5\%\to \frac{5}{100}\to &0.05\\ t=\textit{elapsed time}\to &14\\ \end{cases} \\\\\\ 452=P(1+0.05)^{14}\implies \cfrac{452}{1.05^{14}}=P[/tex]
then 2 weeks go by, or 14 days, and the plant grew to 452 cm.
[tex]\bf \qquad \textit{Amount for Exponential Growth}\\\\ A=P(1 + r)^t\qquad \begin{cases} A=\textit{accumulated amount}\to 452\\ P=\textit{initial amount}\\ r=rate\to 5\%\to \frac{5}{100}\to &0.05\\ t=\textit{elapsed time}\to &14\\ \end{cases} \\\\\\ 452=P(1+0.05)^{14}\implies \cfrac{452}{1.05^{14}}=P[/tex]
Answer:
Te plant was 228.29 centimeters tall.
Step-by-step explanation:
To find the size of the plant 14 days (2 weeks ago), we will use a formula called "exponential growth."
[tex]A=P(1+r)^{t}[/tex]
where
A=accumulated amount.
P=initial ammount
r=rate
t=elapsed time.
replacing the values we have
A=452 centimeters
P=variable to find
r=5% = 0.05
t=2 weeks= 14 days
So, we substitute the values in the equation
[tex]452=P(1+0.05)^{14}[/tex]
Then, we clear the variable P
[tex]P=\frac{452}{1.05^{14} }[/tex]
and perform the operations
[tex]P=\frac{452}{1.979931} =228.29centimeters[/tex]