if the line containing the coordinate "k", is parallel to the line at 5,5 and 1,-4, then their slopes must be the same, since parallel lines, have the same slope, let's check both slopes then.
[tex]\bf \begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
% (a,b)
&({{ 5}}\quad ,&{{ 5}})\quad
% (c,d)
&({{ 1}}\quad ,&{{ -4}})
\end{array}
\\\\\\
% slope = m
slope = {{ m}}= \cfrac{rise}{run} \implies
\cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{-4-5}{1-5}\implies \cfrac{-9}{-4}\implies \boxed{\cfrac{9}{4}}\\\\
-------------------------------\\\\[/tex]
[tex]\bf \begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
% (a,b)
&({{ -5}}\quad ,&{{ k}})\quad
% (c,d)
&({{ 2}}\quad ,&{{ 10}})
\end{array}
\\\\\\
% slope = m
slope = {{ m}}= \cfrac{rise}{run} \implies
\cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{10-k}{2-(-5)}\implies \cfrac{10-k}{2+5}
\\\\\\
\stackrel{\textit{parallel lines, same slope}}{\cfrac{10-k}{7}=\boxed{\cfrac{9}{4}}}\implies 40-4k=63\implies -23=4k\implies -\cfrac{23}{4}=k[/tex]