Respuesta :

Sent a pic of the solution (s).
Ver imagen Аноним

The derivative of y = (x³ + 2)²(x⁴ + 4)⁴ using logarithmic differentiation is;

y' =  {[6x²In(x³ + 2)]/(x³ + 2)} + {[16x³In(x⁴ + 4)⁴]/(x⁴ + 4)} × [(x³ + 2)²(x⁴ + 4)⁴]

We are given the function;

y = (x³ + 2)²(x⁴ + 4)⁴

We want to find the derivative using logarithmic differentiation;

Step 1; Take the natural log of both sides;

In y = In[(x³ + 2)²(x⁴ + 4)⁴]

Step 2;

Using log of a product property on this, we have;

In y = In(x³ + 2)² + In(x⁴ + 4)⁴

Step 3; We will now differentiate both sides with chain rule to get;.

y'/y = [6x²In(x³ + 2)]/(x³ + 2) + [16x³In(x⁴ + 4)⁴]/(x⁴ + 4)

Step 4; Using multiplication property of equality, multiply both sides by y to get;

y' =  {[6x²In(x³ + 2)]/(x³ + 2) + [16x³In(x⁴ + 4)⁴]/(x⁴ + 4)} × y

Step 5; Plug in the value of y = (x³ + 2)²(x⁴ + 4)⁴ to get;

y' =  {[6x²In(x³ + 2)]/(x³ + 2)} + {[16x³In(x⁴ + 4)⁴]/(x⁴ + 4)} × [(x³ + 2)²(x⁴ + 4)⁴]

Read more at; https://brainly.com/question/13240582