Respuesta :

We are given that [tex]4f(x)+f(5-x)=x^2[/tex].

Substitute x with 5-x, then the above equation becomes:

[tex]4f(5-x)+f(5-(5-x))=(5-x)^2[/tex], that is

[tex]4f(5-x)+f(x)=(5-x)^2[/tex]


So, we have the following system of equations:

i) [tex]4f(x)+f(5-x)=x^2[/tex]
ii) [tex]4f(5-x)+f(x)=(5-x)^2[/tex]

multiply the first equation by -4, so that we eliminate f(5-x)'s

i) [tex]-16f(x)-4f(5-x)=-4x^2[/tex]
ii) [tex]4f(5-x)+f(x)=(5-x)^2[/tex]

adding the 2 equations side by side we have:

[tex]-15f(x)=-4x^2+(5-x)^2[/tex]

expanding the binomial, and collecting same terms we have:

[tex]-15f(x)=-4x^2+(25-10x+x^2)[/tex]

[tex]-15f(x)=-3x^2-10x+25[/tex]

dividing by -5:

[tex]3f(x)=\frac{3}{5}x^2+2x-5[/tex]

dividing by 3:

[tex]\displaystyle{f(x)= \frac{1}{5}x^2+ \frac{2}{3}x-\frac{5}{3} [/tex]


Answer: [tex]\displaystyle{f(x)= \frac{1}{5}x^2+ \frac{2}{3}x-\frac{5}{3} [/tex]