Respuesta :

the nth term is 3n²+7

Answer:

The nth term of sequence is [tex]3n^{2}+7[/tex]

Step-by-step explanation:

We need to find out the general recurrence relation of sequence:

[tex]10, 19, 34, 55[/tex]

if we see pattern of sequence that every square of each number 'n' is multiple of 3 and addition of 7

check this pattern by [tex]3n^{2}+7[/tex]

For n=1

[tex]3n^{2}+7[/tex]

[tex]3(1)^{2}+7[/tex]

[tex]3+7[/tex]

[tex]10[/tex]

For n=2

[tex]3n^{2}+7[/tex]

[tex]3(2)^{2}+7[/tex]

[tex]3\times 4+7[/tex]

[tex]12+7[/tex]

[tex]19[/tex]

For n=3

[tex]3n^{2}+7[/tex]

[tex]3(3)^{2}+7[/tex]

[tex]3\times 9+7[/tex]

[tex]27+7[/tex]

[tex]34[/tex]

And so on..

Therefore, the nth term of sequence is [tex]3n^{2}+7[/tex]