Respuesta :

Attached the solution. It is important to know the 30-60-90 and 45-45-90 special right triangles.
Ver imagen Аноним

Answer:

[tex]x=4[/tex]

Step-by-step explanation:

We have been given an image of two right triangles and we asked to find the value of x.

First of all , we will find the length of segment RT using sine.

[tex]\text{Sin}=\frac{\text{Opposite}}{\text{Hypotenuse}}[/tex]

Upon substituting our given values in above formula we will get,

[tex]\text{Sin}(60^{\circ})=\frac{2\sqrt{3}}{RT}[/tex]

[tex]RT=\frac{2\sqrt{3}}{\text{Sin}(60^{\circ})}[/tex]

[tex]RT=\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}[/tex]

[tex]RT=\frac{2\sqrt{3}}{\sqrt{3}}\times 2[/tex]

[tex]RT=2\times 2[/tex]

[tex]RT=4[/tex]

Now we know that length of segment RT and angle QRT of triangle QRT, so we will use tangent to find the length of segment QR (x) as:

[tex]\text{tan}=\frac{\text{Opposite}}{\text{Adjacent}}[/tex]

[tex]\text{tan}(45^{\circ})=\frac{x}{4}[/tex]

Multiplying both sides of our equation by 4 we will get,

[tex]\text{tan}(45^{\circ})*4=\frac{x}{4}*4[/tex]

[tex]\text{tan}(45^{\circ})*4=x[/tex]

Substituting [tex]\text{tan}(45^{\circ})=1[/tex] we will get,

[tex]1*4=x[/tex]

[tex]4=x[/tex]

Therefore, the value of x is 4 units.