Respuesta :
7*6*5*4*3*2*1 / (3*2*1 * 4*3*2*1) = 35
there are 35 different ways
Combinations
The number of ways to select r things from a total of n things is given by combination formula:
[tex]nCr=\frac{n!}{(n-r)!r!}[/tex] [ n! = n*(n-1)*(n-2)*...*1 ]
Our problem wants us to select 3 fruits from a total of 7 types of fruits. So [tex]n=7[/tex] and [tex]r=3[/tex]. Plugging in the formula:
[tex]7C3=\frac{7!}{(7-3)!3!}\\=\frac{7!}{4!3!}\\=35[/tex]
So, there are 35 different ways to choose 3 fruits from 7 types of fruit.
ANSWER: 35 Ways