Respuesta :
Greetings!
FOIL stands for:
Front
Outside
Inside
Last
This tells which terms to multiply when using the Distributive Property.
(NOTE: Only applicable with 2-term Polynomials)
For Example:
[tex](a+b)(a-b)[/tex]
Multiply the Fronts of both Equations:
[tex](a*a)[/tex]
Multiply the Outsides of both Equations:
[tex](a*a)+(a*-b)[/tex]
Multiply the Insides of both Equations:
[tex](a*a)+(a*-b)+(b*a)[/tex]
Multiply the Lasts of both Equations:
[tex](a*a)+(a*-b)+(b*a)+(b*-b)[/tex]
Simplify.
[tex]=a^2-ab+ba-b^2[/tex]
[tex]=a^2-b^2[/tex]
Alternative Method (My Prefered Method)
[tex](a+b)(a-b)=a(a+b)-b(a+b)[/tex]
Use Regular Distributive Property.
[tex]a(a+b)-b(a+b)[/tex]
[tex]a*a+a*b-b*a+-b*b[/tex]
Simplify.
[tex]a^2+ab-ba+-b^2[/tex]
[tex]a^2-b^2[/tex]
Hope this helps.
-Benjamin
FOIL stands for:
Front
Outside
Inside
Last
This tells which terms to multiply when using the Distributive Property.
(NOTE: Only applicable with 2-term Polynomials)
For Example:
[tex](a+b)(a-b)[/tex]
Multiply the Fronts of both Equations:
[tex](a*a)[/tex]
Multiply the Outsides of both Equations:
[tex](a*a)+(a*-b)[/tex]
Multiply the Insides of both Equations:
[tex](a*a)+(a*-b)+(b*a)[/tex]
Multiply the Lasts of both Equations:
[tex](a*a)+(a*-b)+(b*a)+(b*-b)[/tex]
Simplify.
[tex]=a^2-ab+ba-b^2[/tex]
[tex]=a^2-b^2[/tex]
Alternative Method (My Prefered Method)
[tex](a+b)(a-b)=a(a+b)-b(a+b)[/tex]
Use Regular Distributive Property.
[tex]a(a+b)-b(a+b)[/tex]
[tex]a*a+a*b-b*a+-b*b[/tex]
Simplify.
[tex]a^2+ab-ba+-b^2[/tex]
[tex]a^2-b^2[/tex]
Hope this helps.
-Benjamin
Multiply the first, outside, inside, and last terms of the binomials.
Multiply a times a, a times -b, b times a, and b times -b.
This is the same as just squaring a and squaring b.
A shortcut is to add a squared and b squared.