Find the radius of convergence, r, of the series. ∞ xn 2n − 1 n = 1 r = 1 find the interval, i, of convergence of the series. (enter your answer using interval notation.) i =

Respuesta :

Assuming the series is

[tex]\displaystyle\sum_{n\ge1}\frac{x^n}{2n-1}[/tex]

The series will converge if

[tex]\displaystyle\lim_{n\to\infty}\left|\frac{\frac{x^{n+1}}{2(n+1)-1}}{\frac{x^n}{2n-1}}\right|<1[/tex]

We have

[tex]\displaystyle\lim_{n\to\infty}\left|\frac{\frac{x^{n+1}}{2(n+1)-1}}{\frac{x^n}{2n-1}}\right|=|x|\lim_{n\to\infty}\frac{\frac1{2n+1}}{\frac1{2n-1}}=|x|-\lim_{n\to\infty}\frac{2n-1}{2n+1}=|x|<1[/tex]

So the series will certainly converge if [tex]-1<x<1[/tex], but we also need to check the endpoints of the interval.

If [tex]x=1[/tex], then the series is a scaled harmonic series, which we know diverges.

On the other hand, if [tex]x=-1[/tex], by the alternating series test we can show that the series converges, since

[tex]\left|\dfrac{(-1)^n}{2n-1}\right|=\dfrac1{2n-1}\to0[/tex]

and is strictly decreasing.

So, the interval of convergence for the series is [tex]-1\le x<1[/tex].