Respuesta :
Given expression: [tex](x^4)(3x^3-2)(4x^2+5x)[/tex].
We need to simplify the given expression by multiplying.
[tex]\mathrm{Expand}\:\left(3x^3-2\right)\left(4x^2+5x\right):\quad 12x^5+15x^4-8x^2-10x[/tex]
[tex]=\left(x^4\right)\left(12x^5+15x^4-8x^2-10x\right)[/tex]
[tex]\left(x^4\right)\left(12x^5+15x^4-8x^2-10x\right):\quad 12x^9+15x^8-8x^6-10x^5[/tex]
[tex]=12x^9+15x^8-8x^6-10x^5[/tex]
Therefore, [tex]\left(x^4\right)\left(3x^3-2\right)\left(4x^2+5x\right)=\quad 12x^9+15x^8-8x^6-10x^5.[/tex].
Answer:
[tex]12x^9+15x^8-8x^6-10x^5[/tex]
Step-by-step explanation:
We have to find the product:
[tex]x^4\times (3x^3-2)\times (4x^2+5x)\\\\= x^4\times (3x^3(4x^2+5x)-2(4x^2+5x))\\\\=x^4\times(12x^5+15x^4-8x^2-10x)\\\\=12x^9+15x^8-8x^6-10x^5[/tex]