Respuesta :

Given expression: [tex](x^4)(3x^3-2)(4x^2+5x)[/tex].

We need to simplify the given expression by multiplying.

[tex]\mathrm{Expand}\:\left(3x^3-2\right)\left(4x^2+5x\right):\quad 12x^5+15x^4-8x^2-10x[/tex]

[tex]=\left(x^4\right)\left(12x^5+15x^4-8x^2-10x\right)[/tex]

[tex]\left(x^4\right)\left(12x^5+15x^4-8x^2-10x\right):\quad 12x^9+15x^8-8x^6-10x^5[/tex]

[tex]=12x^9+15x^8-8x^6-10x^5[/tex]

Therefore, [tex]\left(x^4\right)\left(3x^3-2\right)\left(4x^2+5x\right)=\quad 12x^9+15x^8-8x^6-10x^5.[/tex].

Answer:

[tex]12x^9+15x^8-8x^6-10x^5[/tex]

Step-by-step explanation:

We have to find the product:

   [tex]x^4\times (3x^3-2)\times (4x^2+5x)\\\\= x^4\times (3x^3(4x^2+5x)-2(4x^2+5x))\\\\=x^4\times(12x^5+15x^4-8x^2-10x)\\\\=12x^9+15x^8-8x^6-10x^5[/tex]