Respuesta :

Refer to the diagram shown below.

m =  the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A =  the amplitude ( the maximum distance) of the mass from the equilibrium
        position

The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω =  the circular frequency of the motion
T =  the period of the motion so that ω = (2π)/T

The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)

In the equilibrium position,
x is zero;
v is maximum;
a is zero.

At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.

In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
Ver imagen Аноним