Answer: Not similar
Step-by-step explanation:
From the given graph, by using distance formula
For figure WXYZ with coordinates W(2,0), X(0,0), Y(0,3) and Z(2,3)
Since, YX is on y axis, then length of YX=[tex]|3-0|=3\ units[/tex]
Similarly, WX is on x axis, then length of WX=[tex]|2-0|=2[/tex]
Now, for W'X'Y'Z' with coordinates W' (6, 0); X' (0, 0); Y' (0, 12); Z' (6,12), the length of W'X'=[tex]\sqrt{(6-0)^2+(0)^2}=6\ units[/tex]
The length of Y'X'=[tex]\sqrt{(0)^2+(0-12)^2}=12\ units[/tex]
We know that if two figures are similar then their corresponding sides are proportional.
Now, [tex]\frac{YX}{Y'X'}=\frac{3}{12}=\frac{1}{4}[/tex]
[tex]\frac{WX}{W'X'}=\frac{2}{6}=\frac{1}{3}[/tex]
But, [tex]\frac{1}{4}\neq\frac{1}{3}[/tex],
Hence they are not proportional so they are not similar.