Respuesta :

see the attached figure with letters to better understand the problem

we know that

If the figure is a rectangle          

then

[tex]AB=CD \\AD=BC[/tex]

The area of the rectangle is equal to

[tex]A=B*h[/tex]  

where  

B is the base  

h is the height  

the base B is equal to the distance AB

the height h is equal to the distance AD  

Step 1

Find the distance AB

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

[tex]A(-5,5)\\B(0,-5)[/tex]  

substitute the values

[tex]d=\sqrt{(-5-5)^{2}+(0+5)^{2}}[/tex]

[tex]d=\sqrt{(-10)^{2}+(5)^{2}}[/tex]

[tex]dAB=\sqrt{125}\ units[/tex]

Step 2

Find the distance AD

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

[tex]A(-5,5)\\D(-1,7)[/tex]  

substitute the values

[tex]d=\sqrt{(7-5)^{2}+(-1+5)^{2}}[/tex]

[tex]d=\sqrt{(2)^{2}+(4)^{2}}[/tex]

[tex]dAD=\sqrt{20}\ units[/tex]

Step 3

Find the area of the rectangle

[tex]A=AB*AD[/tex]

we have

[tex]dAB=\sqrt{125}\ units[/tex]

[tex]dAD=\sqrt{20}\ units[/tex]

substitute

[tex]A=\sqrt{125}*\sqrt{20}[/tex]

[tex]A=\sqrt{2,500}[/tex]

[tex]A=50\ units^{2}[/tex]

therefore

the answer is the option

[tex]50\ units^{2}[/tex]

Ver imagen calculista

Answer:

The area is 50 units.

Step-by-step explanation:

Use the distance formula to find the length and then the width.

Then use this information to plug into the area formula: a= L x W