find the value of y in the equation

Answer:
The value of [tex]y = 2\frac{3}{8}[/tex]
Step-by-step explanation:
Given an equation : [tex]\frac{3}{y-2}=8[/tex]
Cross multiplying states that multiplying the numerator of each fraction by the other's denominator.
[tex]\frac{a}{b}= \frac{c}{d}[/tex] or
[tex]a\cdot d = b \cdot c[/tex]
Now, we use cross multiply for the given equation:
we can write it as : [tex]\frac{3}{y-2}=\frac{8}{1}[/tex]
then, [tex]3\cdot 1 = (y-2) \cdot 8[/tex]
Using distributive property on right hand side : [tex]a(b-c)= a\cdot b- a\cdot c[/tex]
we have,
[tex]3=8y-16[/tex]
Adding 16 both the sides we get,
[tex]3+16=8y-16+16[/tex]
Simplify:
[tex]8y = 19[/tex]
Divide by 8 both sides, we get
[tex]y=\frac{19}{8}[/tex] or [tex]y = 2\frac{3}{8}[/tex]
therefore, the value of y is, [tex]y = 2\frac{3}{8}[/tex]