Respuesta :

When I factored it I got 4a^2(8a+3)

Answer: [tex]4a^2(8a+3)[/tex]

Step-by-step explanation:

The given algebraic expression : [tex]32a^3 + 12a^2[/tex]

Here , the prime factorization of [tex]32a^3 \text{ and } 12a^2[/tex] are:

[tex]32a^3=2\times2\times2\times2\times2\times a\times a[/tex]

[tex]12\ a^2=2\times 2\times 3\times a\times a[/tex]

Greatest Common factor (GCF)= [tex]2\times2\times a\times a= 4a^2[/tex]

Taking the GCF out of the each term of the expression , we get

[tex]32a^3 + 12a^2\\\\=4a^2\times 8a +4a^2\times 3\\\\=4a^2(8a+3)[/tex]

Hence, the fully factored form of [tex]32a^3 + 12a^2=4a^2(8a+3)[/tex]