Respuesta :
Answer: [tex]4a^2(8a+3)[/tex]
Step-by-step explanation:
The given algebraic expression : [tex]32a^3 + 12a^2[/tex]
Here , the prime factorization of [tex]32a^3 \text{ and } 12a^2[/tex] are:
[tex]32a^3=2\times2\times2\times2\times2\times a\times a[/tex]
[tex]12\ a^2=2\times 2\times 3\times a\times a[/tex]
Greatest Common factor (GCF)= [tex]2\times2\times a\times a= 4a^2[/tex]
Taking the GCF out of the each term of the expression , we get
[tex]32a^3 + 12a^2\\\\=4a^2\times 8a +4a^2\times 3\\\\=4a^2(8a+3)[/tex]
Hence, the fully factored form of [tex]32a^3 + 12a^2=4a^2(8a+3)[/tex]