A study of six hundred adults found that the number of hours they spend on social networking sites each week is normally distributed with a mean of 17 hours. the population standard deviation is 6 hours. what is the margin of error for a 95% confidence interval? 0.134 0.220 0.313 0.480

Respuesta :

The answer is C. 0.313

Answer:

0.48

Step-by-step explanation:

Given : Mean = 17 hours

            Standard deviation = 6 hours

            n = population size =600

To Find: what is the margin of error for a 95% confidence interval?

Solution:

n= 600

[tex]\sigma = 6[/tex]

z = 1.96 for a 95 % confidence interval;

Margin of error formula:

[tex]ME=\frac{z \times \sigma}{\sqrt{n}}[/tex]

Substitute the values

[tex]ME=\frac{1.96 \times 6}{\sqrt{600}}[/tex]

[tex]ME=0.48[/tex]

Hence the margin of error for a 95% confidence interval is 0.48