Use stoke's theorem to evaluate∬m(∇×f)⋅ds where m is the hemisphere x^2+y^2+z^2=9, x≥0, with the normal in the direction of the positive x direction, and f=⟨x^5,0,y^1⟩. begin by writing down the "standard" parametrization of ∂m as a function of the angle θ (denoted by "t" in your answer)

Respuesta :

By Stokes' theorem,

[tex]\displaystyle\int_{\partial\mathcal M}\mathbf f\cdot\mathrm d\mathbf r=\iint_{\mathcal M}\nabla\times\mathbf f\cdot\mathrm d\mathbf S[/tex]

where [tex]\mathcal C[/tex] is the circular boundary of the hemisphere [tex]\mathcal M[/tex] in the [tex]y[/tex]-[tex]z[/tex] plane. We can parameterize the boundary via the "standard" choice of polar coordinates, setting

[tex]\mathbf r(t)=\langle 0,3\cos t,3\sin t\rangle[/tex]

where [tex]0\le t\le2\pi[/tex]. Then the line integral is

[tex]\displaystyle\int_{\mathcal C}\mathbf f\cdot\mathrm d\mathbf r=\int_{t=0}^{t=2\pi}\mathbf f(x(t),y(t),z(t))\cdot\dfrac{\mathrm d}{\mathrm dt}\langle x(t),y(t),z(t)\rangle\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^{2\pi}\langle0,0,3\cos t\rangle\cdot\langle0,-3\sin t,3\cos t\rangle\,\mathrm dt=9\int_0^{2\pi}\cos^2t\,\mathrm dt=9\pi[/tex]

We can check this result by evaluating the equivalent surface integral. We have

[tex]\nabla\times\mathbf f=\langle1,0,0\rangle[/tex]

and we can parameterize [tex]\mathcal M[/tex] by

[tex]\mathbf s(u,v)=\langle3\cos v,3\cos u\sin v,3\sin u\sin v\rangle[/tex]

so that

[tex]\mathrm d\mathbf S=(\mathbf s_v\times\mathbf s_u)\,\mathrm du\,\mathrm dv=\langle9\cos v\sin v,9\cos u\sin^2v,9\sin u\sin^2v\rangle\,\mathrm du\,\mathrm dv[/tex]

where [tex]0\le v\le\dfrac\pi2[/tex] and [tex]0\le u\le2\pi[/tex]. Then,

[tex]\displaystyle\iint_{\mathcal M}\nabla\times\mathbf f\cdot\mathrm d\mathbf S=\int_{v=0}^{v=\pi/2}\int_{u=0}^{u=2\pi}9\cos v\sin v\,\mathrm du\,\mathrm dv=9\pi[/tex]

as expected.