Respuesta :

If this problem is cube root of 8 raised to the 1/4x power, it can be written as   8^x/12

Answer:

Given : [tex](\sqrt[3]{8})^{\frac{1}{4}x}[/tex]

Use exponent rules:

[tex]\sqrt[n]{a^m} = (a^m)^{\frac{1}{n} }= a^{\frac{m}{n}}[/tex]

then;

[tex](8^{\frac{1}{3}} )^{\frac{1}{4}x}[/tex]

[tex](8)^{\frac{1}{3 \cdot 4}x}[/tex]

[tex]8^{\frac{1}{12}x}[/tex]

or

[tex](\sqrt[12]{8})^{x}[/tex]

Therefore, the expression which is equivalent to [tex](\sqrt[3]{8})^{\frac{1}{4}x}[/tex] is, [tex](\sqrt[12]{8})^{x}[/tex]