Respuesta :
Multiply your (y - 4)(y^2 + 4y + 16) to determine a:
(y)(y^2) + (y)(4y) + (y)(16) - (4)(y^2) - (4)(4y) - (4)(16)
y^3 + 4y^2 + 16y - 4y^2 - 16y - 64
As you can see, a there is 16. That's the answer.
Hope this helps!
(y)(y^2) + (y)(4y) + (y)(16) - (4)(y^2) - (4)(4y) - (4)(16)
y^3 + 4y^2 + 16y - 4y^2 - 16y - 64
As you can see, a there is 16. That's the answer.
Hope this helps!
Answer:
a = 16
Step-by-step explanation:
Given : Using the distributive property to find the product [tex]\left(y\:-4\right)\left(y^2+4y\:+16\right)[/tex] results in a polynomial of the form [tex]y^3+4y^2 + ay-4y^2-ay-64.[/tex]
We have to find the value of a in the polynomial.
Consider the product of [tex]\left(y\:-4\right)\left(y^2+4y\:+16\right)[/tex]
Using distributive property, Multiply each term of first bracket with each term of second bracket.
We get,
[tex]\left(y\:-4\right)\left(y^2+4y\:+16\right)=y(y^2+4y+16)-4(y^2+4y+16)\\\\\\ \left(y\:-4\right)\left(y^2+4y\:+16\right)=yy^2+y\cdot \:4y+y\cdot \:16 \left(-4\right)y^2+\left(-4\right)\cdot \:4y+\left(-4\right)\cdot \:16[/tex]
Simplify , we get,
[tex]=y^2y+4yy+16y-4y^2-4\cdot \:4y-4\cdot \:16[/tex]
[tex]=y^3+4y^2+16y-4y^2-16y-64[/tex]
Thus, comparing with [tex]y^3 + 4y^2 + ay-4y^2-ay-64.[/tex] , we get a = 16