Respuesta :
[tex]\bf [sin(t)]^2=\cfrac{3}{4}\implies sin^2(t)=\cfrac{3}{4}\implies sin(t)=\pm\sqrt{\cfrac{3}{4}}
\\\\\\
sin(t)=\pm\cfrac{\sqrt{3}}{\sqrt{4}}\implies sin(t)=\pm\cfrac{\sqrt{3}}{2}\implies \measuredangle t=
\begin{cases}
\frac{\pi }{3}\\\\
\frac{2\pi }{3}\\\\
\frac{4\pi }{3}\\\\
\frac{5\pi }{3}
\end{cases}[/tex]
The solution to the equation [tex]\sin(t))^2=\frac{3}{4}[/tex] is[tex]t=\frac{\pi}{3} ,\frac{2\pi}{3},\frac{4\pi}{3},\frac{5\pi}{3}[/tex].
We have equation [tex]\sin(t))^2=\frac{3}{4}[/tex]
The sine function is positive in the first and the second quadrant.
Solving this equation
[tex](\sin(t))^2=\frac{3}{4}\\\sin(t)=\pm\frac{\sqrt{3} }{\sqrt{4} }\\\sin(t)=\pm\frac{\sqrt{3} }{2}\\t=\frac{\pi}{3} ,\frac{2\pi}{3},\frac{4\pi}{3},\frac{5\pi}{3}[/tex]
Th values of t in [0, 2π] is[tex]t=\frac{\pi}{3} ,\frac{2\pi}{3},\frac{4\pi}{3},\frac{5\pi}{3}[/tex]
Learn more:https://brainly.com/question/8120556