Respuesta :
mass = 3,5 kg
weight = 35 N
distance = 6,4 m
Weight on X axis: Wx = weight.sine30
Wx = 35.0,5 = 17,5 N
F = m.a
17,5 = 3,5.a
a = 17,5/3,5
a = 5 m/s²
V² = V0² + 2a.d
V² = 0 + 2.5.6,4
V = √64
V = 8 m/s
weight = 35 N
distance = 6,4 m
Weight on X axis: Wx = weight.sine30
Wx = 35.0,5 = 17,5 N
F = m.a
17,5 = 3,5.a
a = 17,5/3,5
a = 5 m/s²
V² = V0² + 2a.d
V² = 0 + 2.5.6,4
V = √64
V = 8 m/s
Answer:
The speed of the block at the bottom is 7.92 m/s.
Explanation:
Given that,
Mass of block = 3.5 kg
Length l = 6.4 m
Horizontal angle = 30°
According to figure,
Using balance equation
[tex]ma=mg\ sin\theta[/tex]
Here, m = mass of block
a = acceleration of the block
[tex]a = g\ sin\theta[/tex]
Using equation of motion
[tex]v^2=u^2+2as[/tex]
[tex]v^2=0+2\times g\ sin\theta\times6.4[/tex]
[tex]v^2= 2\times g\ sin\ 30^{\circ}\times 6.4[/tex]
[tex]v^2=2\times9.8\times0.5\times6.4[/tex]
[tex]v^2=62.72[/tex]
[tex]v=7.92\ m/s[/tex]
Hence, The speed of the block at the bottom is 7.92 m/s.
