Respuesta :
it has one solution. when discriminant=0, tangent to the curve( means touches at one point ) hence one solution.
we know that
the formula to solve a quadratic equation of the form [tex]ax^{2}+bx+c=0[/tex] is equal to
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}}{2a}[/tex]
The discriminant is equal to
[tex](b^{2}-4ac)[/tex]
If the discriminant is equal to zero
then
[tex](b^{2}-4ac)=0[/tex]
substitute in the formula
[tex]x=\frac{-b(+/-)\sqrt{0}}{2a}[/tex]
[tex]x=-\frac{b}{2a}[/tex]-------> only one real number solution
therefore
the answer is
the number of solutions is equal to [tex]1[/tex]