Respuesta :

You nee the area of the base of the prism times the height of the prism.

(1/2)(2)(4.4)(5)    this is the volume of the prism

Now you need the volume of the solid above it.

(1/3)(1/2)(2)(4.4)(3.9)

Now you add both volumes.

The volume of the composite figure is [ [tex]\frac{1}{2}[/tex] (5)(4.4)(2) +  [tex]\frac{1}{3}[/tex] . [tex]\frac{1}{2}[/tex] (2)(4.4)(3.9) ].

What is Volume of a Solid?

The volume of a solid is the measure of how much space an object takes up. It is measured by the number of unit cubes it takes to fill up the solid.

According to the given problem,

For the triangular prism at the base of the solid above,

Height (h) = 2

Width = 4.4

Length = 5

Volume of the triangular prism = [tex]\frac{1}{2}[/tex] × length × width × height

                                                   = [tex]\frac{1}{2}[/tex] × 5 × 4.4 × 2

Now, for the volume of the solid,

Height = 3.9

Volume of the solid = [tex]\frac{Base Area*height}{3}[/tex]

                                 = [tex]\frac{1}{3}[/tex] × [tex]\frac{1}{2}[/tex] × 2 × 4.4 × 3.9

Total volume =  ( [tex]\frac{1}{2}[/tex] × 5 × 4.4 × 2 ) + (  [tex]\frac{1}{3}[/tex] × [tex]\frac{1}{2}[/tex] × 2 × 4.4 × 3.9 )

Hence, we can conclude, the volume of the composite figure is [ [tex]\frac{1}{2}[/tex] (5)(4.4)

(2) +  [tex]\frac{1}{3}[/tex] . [tex]\frac{1}{2}[/tex] (2)(4.4)(3.9) ].

Learn more about volume of a solid here: https://brainly.com/question/12649605

#SPJ2