Answer with explanation:
The given expression is:
[tex]2 \sqrt{3}\cos x * \csc x+4 \cos x-3 \csc x-2\sqrt{3}\\\\=2 \cos x*(\sqrt{3}*\csc x+2)-\sqrt{3}*(\sqrt{3}*\csc x+2)\\\\\rightarrow (2\cos x -\sqrt{3})*(\sqrt{3}*\csc x+2)\\\\\rightarrow (2\cos x -\sqrt{3})*(\sqrt{3}*\csc x+2)=0\\\\(2\cos x -\sqrt{3})=0 \wedge (\sqrt{3}*\csc x+2)=0[/tex]
[tex]\cos x=\frac{\sqrt{3}}{2} \wedge \csc x=\frac{-2}{\sqrt{3}}\\\\x=\frac{\pi}{6},2\pi-\frac{\pi}{6}\\\\x=\frac{\pi}{6},\frac{11\pi}{6} \wedge x=\pi+\frac{\pi}{3} ,2\pi-\frac{\pi}{3}\\\\x=\frac{4\pi}{3},\frac{5\pi}{3}\\\\x={\frac{\pi}{6},\frac{11\pi}{6},\frac{4\pi}{3},\frac{5\pi}{3}}[/tex]
Option C